Learning to rank related entities in Web search
نویسندگان
چکیده
Entity ranking is a recent paradigm that refers to retrieving and ranking related objects and entities from different structured sources in various scenarios. Entities typically have associated categories and relationships with other entities. In this work, we present an extensive analysis of Web-scale entity ranking, based on machine learned ranking models using an ensemble of pair-wise preference models. Our proposed system for entity ranking uses structured knowledge bases, entity relationship graphs and user data to derive useful features to facilitate semantic search with entities directly within the learning to rank framework. We also describe a suite of novel features in the context of entity ranking and present a detailed feature space analysis. The experimental results are validated on a large-scale graph containing millions of entities and hundreds of millions of entity relationships. We show that our proposed ranking solution clearly improves simple user behavior based ranking and several baselines.
منابع مشابه
RRLUFF: Ranking function based on Reinforcement Learning using User Feedback and Web Document Features
Principal aim of a search engine is to provide the sorted results according to user’s requirements. To achieve this aim, it employs ranking methods to rank the web documents based on their significance and relevance to user query. The novelty of this paper is to provide user feedback-based ranking algorithm using reinforcement learning. The proposed algorithm is called RRLUFF, in which the rank...
متن کاملPresenting a method for extracting structured domain-dependent information from Farsi Web pages
Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...
متن کاملA New Hybrid Method for Web Pages Ranking in Search Engines
There are many algorithms for optimizing the search engine results, ranking takes place according to one or more parameters such as; Backward Links, Forward Links, Content, click through rate and etc. The quality and performance of these algorithms depend on the listed parameters. The ranking is one of the most important components of the search engine that represents the degree of the vitality...
متن کاملEffective Learning to Rank Persian Web Content
Persian language is one of the most widely used languages in the Web environment. Hence, the Persian Web includes invaluable information that is required to be retrieved effectively. Similar to other languages, ranking algorithms for the Persian Web content, deal with different challenges, such as applicability issues in real-world situations as well as the lack of user modeling. CF-Rank, as a ...
متن کاملTowards Supporting Exploratory Search over the Arabic Web Content: The Case of ArabXplore
Due to the huge amount of data published on the Web, the Web search process has become more difficult, and it is sometimes hard to get the expected results, especially when the users are less certain about their information needs. Several efforts have been proposed to support exploratory search on the web by using query expansion, faceted search, or supplementary information extracted from exte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 166 شماره
صفحات -
تاریخ انتشار 2015